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Abstract. We obtain, for a subclass of structure functions characterizing a first-class Hamiltonian
system, recursive relations from which the general form of the local symmetry transformations can
be constructed in terms of the independent gauge parameters. We apply this to a non-trivial
Hamiltonian system involving two primary constraints, as well as two secondary constraints of the
Nambu–Goto type. We also illustrate for a pure Chern–Simons theory how this formalism can be
extended to a system with first- and second-class constraints.

1. Introduction

The problem of finding the most general local symmetries of a Lagrangian has been pursued
by various authors, using either Lagrangian [1–4] or Hamiltonian techniques [5–8]. It is well
known since the work of Dirac [9] that the generatorGof the local symmetries of a Hamiltonian
system is given as a linear combination of the first-class constraints of that system. However, in
order to also be the generator of local symmetries of the action, restrictions must be imposed
on the gauge functions parametrizing the generatorG. Indeed, the number of independent
gauge parameters characterizing a Lagrangian symmetry is equal to the number of first-class
primaryconstraints, that is, constraints which follow solely from the definition of the canonical
momenta. Hence, if there exist first-classsecondaryconstraints generated by the usual Dirac
algorithm from the primary ones by the requirement of persistence in time of the constraints,
such restrictions must exist.

In a recent paper [10] we showed that the requirement of commutativity of the time
derivative operation with an infinitesimal gauge variation generated byG was the only input
needed to obtain the restrictions on the gauge parameters determining the most general
form of the generator of Lagrangian symmetries. The analysis was performed entirely
within the Hamiltonian framework. On the basis of the above commutativity requirement
we subsequently derived [11] a simple differential equation for the generator encoding, in
particular, the restrictions on the gauge parameters in the form of first-order coupled differential
equations. This coupled set of equations can, in general, not be solved for the gauge parameters.
Nevertheless, for a subclass of the structure functions, characteristic of a number of physically
interesting systems (which include Yang–Mills theories [11]), an explicit solution can be
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obtained. Though the solution in this case has been constructed previously [13], we believe
our procedure and presentation to be considerably simpler.

This paper is organized as follows. In section 2 we derive and explicitly solve for a subclass
of structure functions the recursive relations for the gauge parameters, and thereby obtain the
explicit form of the corresponding gauge variations at the Lagrangian level. In section 3
we then illustrate this general scheme in terms of two examples: we first consider a (purely
first-class) non-trivial model discussed in the literature [12], whose secondary constraints are
identical with the primary constraints of the Nambu–Goto model. Our result for the gauge
transformation is found to agree with that quoted in the literature. Following this, we then
illustrate for the case of a pure Abelian Chern–Simons theory, two possible procedures for
dealing with a system having first- and second-class constraints.

2. Recursive construction of a gauge generator

Consider a Hamiltonian system whose dynamics is described by the total Hamiltonian

HT = Hc +
∑
a

va8a (1)

whereHc is the canonical Hamiltonian,{8a ≈ 0} are the (first-class) primary constraints
following from the definition of the canonical momenta andva are the associated Lagrange
multipliers. From the requirement that the primary constraints should be conserved in time,
we obtain in the usual way, following the Dirac algorithm [9] the secondary, tertiary, etc
constraints. For later convenience we follow here a notation different from that of [10, 11],
with the Latin indicesa, b, c labelling the primary constraints, Greek indicesα, β, γ labelling
the remaining constraints, and capital Latin indicesA,B,C referring to the complete set
of constraints. For simplicity we shall generally refer to all constraints beyond the primary
ones as ‘secondary’. We denote the complete set of primary and secondary constraints by
{8A} = {8a,8α}.

Following the conjecture of Dirac [9], the generator of the gauge transformationsG is
given by

G =
∑
A

εA8A (2)

where the gauge parameters are allowed to depend in general on time, as well as on the
phase-space variables and Lagrange multipliersva. An infinitesimal transformation on the
coordinates, generated byG, is then given by

δq` = εA[q`,8A] (3)

where a summation over repeated indices is always understood from here on.
The Poisson algebra of the constraints with themselves and with the canonical

Hamiltonian, is of the form

[Hc,8A] = VAB8B (4)

[8A,8B ] = CABC8C (5)

whereVA andCABC may be functions of the phase-space variables.
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As was shown in [6, 10, 11],G in (2) will generate a local symmetry of the corresponding
total Lagrangian, provided the following relations hold:

δvb = dεb

dt
− εA[VA

b + vaCaA
b] (6)

0= dεβ

dt
− εA[VA

β + vaCaA
β ] (7)

whereva are the Lagrange multipliers. In the above equations, dεA/dt denotes the total time
derivative. For obtaining the generator of the symmetries of the original Lagrangian, only
equation (7) is relevant. Equation (6) is required for consistency on the Hamiltonian level
[11].

As shown in [11], the above equations can be compactly summarized in a simple
differential equation for the generatorG expressing its time independence

∂G

∂t
+ [G,HT ] = 0. (8)

Equations (6) and (7) describe the restrictions imposed on the Lagrange multipliers and gauge
parameters for the most general case where the structure functions depend on coordinates and
momenta.

So far the solution of (7) has, in general, not been possible. Hence we shall seek a solution
under two assumptions.

(a) The Poisson bracket ofanyconstraint with the primary constraints is a linear combination
of only the primary constraints. This impliesCaAβ = 0, and hence the absence of the last
term in (7)†.

(b) The structure functionsV βA are either constants, or may be arbitrary functions of the fields
provided that there are no ‘tertiary’ constraints. That is, the Dirac algorithm terminates
at the first level. Important examples are provided by quantum electrodynamics (QED)
and quantum chromodynamics (QCD); see [11], as well as the examples discussed in the
following two sections.

Though the generator of gauge transformations subject to the above assumptions has been
obtained in [13], we wish to present here a more compact and transparent approach to the
solution based directly on the general set of equations (7).

In order to solve equations (7) it is convenient to organize the constraints into ‘families’,
where the parent of each family ‘a’ is given by a primary constraintφ(a)0 , and the remaining
membersφ(a)i , i = 1, 2 . . . , are recursively derived from [13]

[Hc, φ
(a)
i−1] = φ(a)i i = 1, . . . , Na. (9)

The complete set of constraints is now given byφ
(a)
i , a = 1, . . . ,M, i = 0, . . . , Na. Note that

the subscripti = 0 has been reserved to label the primary constraints. With the above change

† From (8) and (2) we see that this condition also implies that

∂

∂t
G + [G,Hc] = PFC (primary first class)

[G,PFC]= PFC

which are the restrictions of [7, 13], claimed to be necessary to have a generator of Lagrangian gauge symmetries.
On the other hand, it was shown in [11] that conditions (6) and (7) following from the ‘master equation’ (8) and the
Poisson brackets (5) are sufficient forG to be the generator of local symmetries at a Lagrangian level. This shows
that the conditions of [7, 13] are unnecessarily restrictive.



2062 R Banerjee et al

in notation for the constraints, the structure functionsVA
B in (4) are correspondingly replaced

by V abij , which now have the simple form

V abij = δabδi,j−1 i = 0, . . . , Na − 1. (10)

In order to ensure that the constraints thus obtained are irreducible, we must adopt some
systematic procedure. A possibility is to implement the Dirac algorithm level by level,
descending from all primary constraints simultaneously. Scanning one by one through each
member at each level, we terminate a family ‘a’, if at a given levelNa, the Poisson bracket of
the constraintφ(a)Na with Hc can be written as a linear combination of all the other constraints
obtained up to this point. This ensures the irreducibility of the constraints thus obtained.
Organizing the families in this particular way then implies thatV abNaj = 0 for j > inf {Na,Nb}.
However, whatever the procedure one adopts for obtaining the irreducible set of constraints,
the Poisson bracket of the final member of each family withHc is given by

[Hc, φ
(a)
Na

] =
M∑
b=1

Nb∑
j=0

V abNajφ
(b)
j (11)

whereM is the number of (independent) primary constraints. Correspondingly, equation (7)
now reads

0= dε(a)i
dt
−

M∑
b=1

Nb∑
j=0

ε
(b)
j V

ba
ji i = 1, . . . , Na. (12)

Choosing as our independent parameters those associated with the last member in each family,

αa := ε(a)Na (t) (13)

and using (10), equations (12) take the form

dε(a)i
dt
− ε(a)i−1−

M∑
b=1

αbV baNbi = 0 i = 1, . . . , Na. (14)

The solution to this set of equations can be constructed iteratively, by starting with the last
member of a family:

ε
(a)
Na−1 =

dαa

dt
−

M∑
b=1

αbV baNbNa . (15)

Continuing in the same fashion, one easily sees that the general solution can be written in the
form

ε
(a)
i =

Na−i∑
n=0

M∑
b=1

dnαb

dtn
Abai(n) i = 0, . . . , Na (16)

with the normalization

AbaNa(0) = δba (17)

following from our choice of parametrization (13). Substituting the above ansatz into (14) and
comparing powers in the time derivatives, we obtain the recursion relations

Abai(n−1) = Abai−1(n) i = 1, . . . , Na (18)
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Table 1.

n = 0 n = 1 n = 2 n = 3 n = 4 . . .

i = Na δba 0 0 0 . . . . . .

i = Na − 1 −V baNb,Na δba 0 . . . . . . . . .

i = Na − 2 −V baNb,Na−1 −V baNbNa δba 0 . . . . . .

i = Na − 2 −V baNb,Na−2 −V baNbNa−1 −V baNbNa δba 0 . . .

. . . . . . . . . . . . . . . . . . . . .

with the ‘initial conditions’

Abai−1(0) = −V baNbi i = 1, . . . , Na (19)

following from a comparison of (14) with (16). It is easy to see, that these recursion relations
determine the complete solution, from which the generator of the Lagrangian gauge symmetries
can be obtained. The result is summarized in table 1, where the entries are the coefficients
Abai(n).

Using (16) in the generator (2), the infinitesimal gauge transformation (3) takes the form

δq` =
M∑
b=1

∑
n>0

dnαb

dtn
ρ`(n)b(q, q̇) (20)

with

ρ`(n)b(q, q̇) =
M∑
a=1

∑
j>0

θ(Na − n− j)Abaj (n)
∂φaj

∂p`
(21)

whereθ is the usual Heavide theta function withθ(0) = 1, and where it is understood that
the dependence on the canonical momenta on the right-hand side has been replaced by the
respective expressions in terms of the Lagrangian variables. Expression (21) is in the form
obtained by purely Lagrangian methods [2, 4].

In the case where all the families contain at most two members and the structure constants
CaA

β vanish† (examples are provided by QED, QCD [11], and those discussed below) we can
relax the above assumption concerning the constancy of the structure functionsV abij , since our
iterative scheme already terminates with equation (15) withNa = 1 for all a, and we have for
the generator

G =
M∑
a=1

[(
dαa

dt
−

M∑
b=1

αbV ba11

)
φ
(a)
0 + αaφ(a)1

]
. (22)

3. Applications

In this section we consider two examples illustrating the procedure. The first one is a modified
version of the Nambu–Goto model, which illustrates the comment made in the last paragraph
above concerning the absence of tertiary constraints. The second example then illustrates two
ways of dealing with systems involving first- and second-class constraints.

† This will be the case if the canonical Hamiltonian can be written in the formHc(q, p, ξ) = H0(q, p)+ ξαTα(q, p)
[12], where the Lagrange multipliersξα are the variables conjugate to the primary constraints, and implement via
[Hc, φa ] = Ta the secondary constraintTa ≈ 0 for each family.
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3.1. Nambu–Goto-type model

Consider the Lagrangian [12]

L =
∫

dσ

(
1

2

ẋ2

λ
− µ
λ
ẋx ′ +

1

2

µ2

λ
x ′2 − 1

2
λx ′2

)
(23)

where the 4-vectorxµ(τ, σ ) labels the coordinates of a ‘string’ parametrized byτ andσ , with
the ‘dot’ and ‘prime’ denoting the derivative with respect toτ andσ , respectively. There are
two primary constraints,π1 ≈ 0 andπ2 ≈ 0, whereπ1 andπ2 are the momenta conjugate to
the fieldsλ(τ, σ ) andµ(τ, σ ), respectively. Hence in our notation

φ
(1)
0 = π1 φ

(2)
0 = π2. (24)

The canonical Hamiltonian reads

Hc =
∫

dσ
{

1
2λ(p

2 + x ′2) +µp · x ′} (25)

wherepµ is the 4-momentum conjugate to the coordinatexµ. The conservation in time of the
primary constraints leads, respectively, to secondary constraints, which in our notation read

φ
(1)
1 = 1

2(p
2 + x ′2) ≈ 0 φ

(2)
1 = p · x ′ ≈ 0. (26)

One readily checks that there are no further constraints.
We see that the secondary constraints are just the primary constraints of the Nambu–Goto

string model. They satisfy the familiar Poisson brackets†

[φ(1)1 (σ ), φ
(1)
1 (σ ′)] = φ(2)1 (σ )∂σ δ(σ − σ ′)− φ(2)1 (σ ′)∂σ ′δ(σ − σ ′) (27)

[φ(1)1 (σ ), φ
(2)
1 (σ ′)] = φ(1)1 (σ )∂σ δ(σ − σ ′)− φ(1)1 (σ ′)∂σ ′δ(σ − σ ′) (28)

[φ(2)1 (σ ), φ
(2)
1 (σ ′)] = φ(2)1 (σ )∂σ δ(σ − σ ′)− φ(2)1 (σ ′)∂σ ′δ(σ − σ ′). (29)

All other Poisson brackets vanish. The constraints are seen to be first class. In our terminology,
we thus have two families, each with two members.

The canonical Hamiltonian is of the form

Hc =
∫

dσ (λπ(1)1 (σ ) +µφ(2)1 (σ )). (30)

The structure functionsV abij are read off from the Poisson brackets

[Hc, φ
(1)
1 ] = −λ∂σφ(2)1 − 2λ′φ(2)1 − µ∂σφ(1)1 − 2µ′φ(1)1 (31)

[Hc, φ
(2)
1 ] = −λ∂σφ(1)1 − 2λ′φ(1)1 − µ∂σφ(2)1 − 2µ′φ(2)1 (32)

to be

V 11
11 (σ, σ

′) = V 22
11 (σ, σ

′) = − (µ(σ)∂σ + 2µ′(σ )
)
δ(σ − σ ′)

V 12
11 (σ, σ

′) = V 21
11 (σ, σ

′) = − (λ(σ)∂σ + 2λ′(σ )
)
δ(σ − σ ′). (33)

Since for the example in questionN1 = N2 = 1, it follows from (15), that our iterative scheme
for finding the solution already ends at the first step, withε

(a)
0 given by

ε
(a)
0 =

dαa

dτ
−
∫

dσ ′
2∑
b=1

αb(σ ′)V ba11 (σ
′, σ ). (34)

† We suppress theτ variable.
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We thus obtain

ε
(1)
0 =

dα1

dτ
− µ∂σα1 +µ′α1− λ∂σα2 + λ′α2 (35)

ε
(2)
0 =

dα2

dτ
− µ∂σα2 +µ′α2 − λ∂σα1 + λ′α1. (36)

From (3) we now compute the corresponding transformation laws for the fields to be

δxµ = α1pµ + α2∂σ x
µ

δλ = ε(1)0 δµ = ε(2)0 .
(37)

Making use of the expressions forε(a)0 derived above, we verify that our results (37) agree with
that quoted in the literature [12].

3.2. System with mixed constraints

As an example of a system with first- and second-class constraints consider the Abelian pure
Chern–Simons theory defined by the Lagrangian

L = 1
2κεµνρA

µ∂νAρ. (38)

The primary and secondary constraints of the system are

π0 ≈ 0

πi − 1
2κεijA

j ≈ 0 i = 1, 2
(39)

and

1
2κεij ∂

iAj ≈ 0 (40)

respectively. These constraints can be grouped, respectively, into first- and second-class
constraints in the following way:

�0 = π0 ≈ 0

�3 = ∂iπi + 1
2κεij ∂

iAj ≈ 0 (41)

and

�i = πi − 1
2κεijA

j ≈ 0 i = 1, 2 (42)

with the Poisson algebra,

[�i(x),�j (y)] = −κεij δ2(x − y). (43)

The gauge symmetries of this Lagrangian can be viewed from two points of view.

(i) The second-class constraints are implemented strongly in terms of Dirac brackets [9]

[Ai(x), Aj (y)] = εij δ2(x − y). (44)

Following the procedure of section 2 with respect to the first-class constraints, the usual gauge
symmetryAµ → Aµ + ∂µ3 of the action is then found to be generated with respect to these
Dirac brackets by the first-class constraints in the particular combination

G =
∫

d2x (�0∂03−�33) (45)

thus implying the usual transformation lawδAµ = ∂µ3.
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(ii) The mixed system is turned into a purely first-class system by following the standard
embedding prescriptions [15], and the enlarged gauge symmetries are explored.

The first step consists in converting the second-class constraints (42) into first-class
constraints by introducing a pair of auxiliary fields81 and82 corresponding to�1 and�2,
respectively, and satisfying the symplectic algebra

[81(x),82(y)] = εij δ2(x − y). (46)

The corresponding first-class constraints are found to be†

ωi = πi − 1
2κεijA

j −√κεij8j ≈ 0 i = 1, 2. (47)

One readily checks that the constraints (47) together with the constraints (41) form a
first-class system. For later convenience we rewrite the constraints (41) in the form [16]

ω0 = �0 = π0 ≈ 0

ωi = πi − 1
2κεijA

j −√κεij8j ≈ 0

ω3 = �3 = ∂iπi + 1
2κεij ∂

iAj ≈ 0.

(48)

One checks that this set of first-class constraints is, in fact, strongly involutive. For the first-
class canonical Hamiltonian of the embedded system one finds [14]

Hc = −κ
∫

d2y A0εij ∂
i

(
Aj +

1√
κ
8j

)
(49)

satisfying the first-class algebra,

[Hc, ω0] = −ω0 [Hc, ω3] = 0 (50)

[Hc, ωi ] = 0 i = 1, 2. (51)

FromHc we obtain the corresponding Lagrangian by following the usual procedure of writing
down the corresponding phase-space path integral including the first-class constraints and
integrating over the momenta conjugate toAµ; the result is

L = − 1
2κεµνρA

µ∂ρAν − 1
2εij8

i∂08
j −√κA0εij ∂

i8j −√κεij8i∂0A
j (52)

or, up to a total divergence,

L = − 1
2κεij

(
Ai +

1√
κ
8i

)
∂0

(
Aj +

1√
κ
8j

)
− κA0εij ∂

i

(
Aj +

1√
κ
8j

)
. (53)

It is easy to see that we recover from this Lagrangian the canonical Hamiltonian (49) and the
full set of first-class constraints above, as well as the second-class constraints

π8i = 1
2εij8

j . (54)

At first it may seem that we have a clash with the first-class construction above. However, the
strong implementation of these second-class constraints just leads to the symplectic algebra
(46), with respect to which the first-class character of the embedded system was shown.
This symplectic algebra also ensures the Lorentz covariance of the Lagrangian [17]. This
demonstrates the consistency of our construction.

Let us finally examine the Lagrangian gauge symmetries implied by the first-class
constraints in the embedded formulation. Because of the absence of ‘tertiary’ constraints,
the generator of the Lagrangian gauge symmetries is found from (22) to be given by

G =
∫

d2x (−ε̇3ω0 + ε3ω3). (55)

† For a non-trivial example see, [14].
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With ε3 = −3, we thus obtain for the allowed gauge transformations:

δA0 = ∂03

δAi = −εi (56)

δ8i = √κ (εi + ∂i3).

Note that in the embedded version the combinationAi + 1√
κ
8i corresponds to the gauge field

Ai in the original formulation, where the second-class constraints were implemented strongly.
This is in accordance with the fact that

δ

(
Ai +

1√
κ
8i

)
= ∂i3 (57)

as seen from (56).

This illustrates two complementary ways of looking at the gauge symmetries of a mixed
constrained system in the sense of Dirac.

4. Conclusion

To summarize, we have shown that the equations defining the restrictions to be imposed on
the gauge parameters in (2) could be solved by following a simple iterative scheme, in the
case where the structure functionsCβaA in equation (7) vanish andV βA are constants. We have
then applied the general ideas to the case of a non-trivial model with a two-family constraint
structure, sharing some properties with the familiar Nambu–Goto model of string theory. Since
each family of constraints consisted of only two members, the solution could be obtained,
although the structure functionsV βA were functions of the fields. We thereby recovered the
local symmetry transformations quoted in the literature. All this referred to systems having
only first-class constraints. We then illustrated in terms of the Abelian Chern–Simons theory,
how this scheme could also be implemented for systems involving first- as well as second-class
constraints.
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